Modelling the Socio-Economic Implications of Climate Change: State of the Art in CGE Modelling and Challenges.

December 2021

Features of Climate and Energy Policies

The clean energy transition is a <u>capital-intensive process</u> through which low value added products (fuels) are substituted by high value-added products and construction (Wind turbines, PV panels, Energy efficient appliances and machines).

>Fossil fuel sectors decline, fuel import bills shrink but at the same time domestic investment expenditures increase

- This process develops in a dynamic framework where prices, technology costs, production structures, consumer preferences and habits evolve requiring different and new types of labour skills, infrastructure and materials.
- >At the early stages of the transition financing requirements are high while the technologies and skills required to make the transition have not yet reached full learning potential potential bottleneck
- During this phase, it is possible that energy budget of agents (including all costs for energy services) increase compared to business as usual.
- The policies and measures may act as conditions enabling positive externalities, which bring cost reductions and cost-efficient uptake of technologies
- Competitiveness impacts are not static, as the industry transforms to produce the novel value-added products and materials. As for all technology-driven growth, first-mover advantages may drive competitiveness gains and exportdriven growth.

Channels through which the decarbonization of the energy system impacts the economy and employment

Sept-2021

DIRECT MULTIPLIER EFFECTS

- ✓ Increased **demand** for sectors that supply the materials/technologies necessary for the transition like:
 - Energy efficiency (insulation, control, eco-design equipment),
 - Renewables,
 - Mobility equipment,
 - Hydrogen and alternative fuels,
 - Grids, networks and smart systems.
- Reduced **demand** for carbon intensive and associated sectors:
 - Fossil fuel extraction and mining,
 - Oil refineries and oil distribution,
 - > Natural gas.

 ✓ Increase in production through demand driven effects (higher investments) from stimulus on domestically produced clean energy technologies

IMPACTS

 Negative demand driven effects from lower production in conventional energy sectors

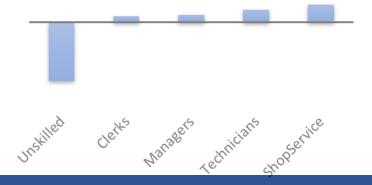
INTERNATIONAL INDUSTRIAL COMPETITIVENESS

- Increasing demand drives cost reductions through economies of scale, learning by doing, accumulation of knowledge and spillovers.
- ✓ If demand is sufficiently large the corresponding cost reductions can provide a comparative advantage to firms (increase profits and market share).
- Competitive firms producing advanced technologies act as a locomotive of growth for the rest of the economy
- ✓ EU ambitious GHG mitigation and RES policies set the size of a market which is characterised by intense international competition (EU demand may well be serviced by non – EU companies)
- Use of expensive energy increases production costs for firms

- ✓ Price decrease through economies of scale, specialisation and vertical integration related to the production of alternative technologies and fuels.
- Positive effects due to increase in productivity enabled by energy efficiency.
- ✓ Improved current account.

5

✓ Price increase if industrial production in the EU is driven by more expensive energy (commodities, grids, equipment) – Loss of competitiveness



IMPACTS

HOUSEHOLD, SKILLS & LABOUR MARKET

- The transition requires the availability of highly skilled labour (e.g. engineers, scientists, construction workers)
- ✓ Skills are connected with different levels of income and consumption patterns
- More expensive energy and high upfront costs imply a crowding out effect on family budgets in the early stages of the transition followed by economic gains due to energy bill savings thank to energy efficiency.

✓ Poverty effects may need focus

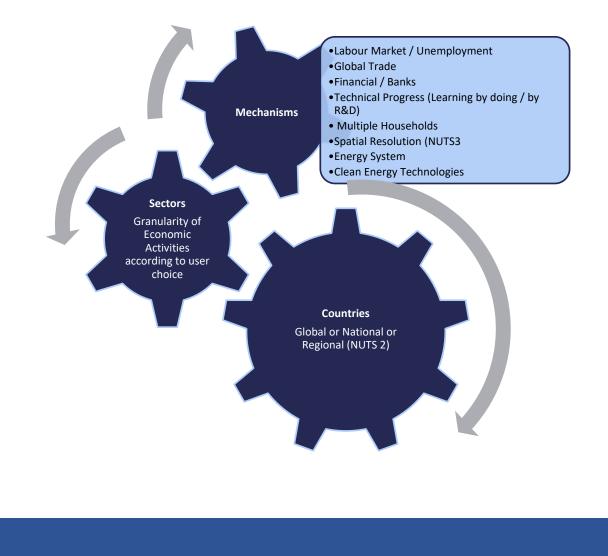
IMPACTS

- ✓ Increased demand for Highly skilled labour
- Increasing household income (for specific occupations) boosts consumption
- ✓ Upgrade of human capital increase diffusion of spillovers and productivity

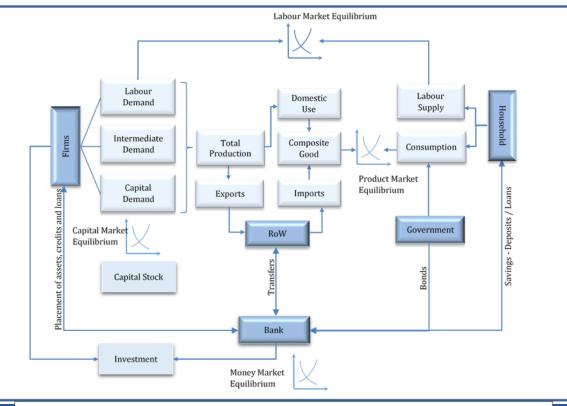
- Crowding out effects but cost savings in the longer term
- ✓ Unemployment Unskilled Labour
- Distributional Implications (energy and technology poverty)

FINANCIAL MARKET

- Cost of financing (interest rate) varies depending on the risk profile of the investment project and debt sustainability considerations.
- Different financing conditions prevail for firms and households
- Availability of low-cost financing impacts investment by sector and the dynamic effects on the economy.
- Repayment of loans affect the dynamics of the economy
- Low risk investment environment is required to attract direct foreign investment and fund raising


Investment driven growth (demand stimulus effect)

IMPACTS


- ✓ Debt and interest rate repayments reduce available income for investment and consumption
- ✓ Significant crowding out effect when financing constraints/shortages apply

CGE Modelling Scope

- CGE models capture the inter-dependencies of all economic agents and are built on sound microeconomic theory.
- Recent Advancements in CGE theory have enabled applied models to capture many more market aspects such as unemployment, imperfect competition, heterogeneity in economic agents' decision
- Sectoral Granularity is of major importance

Environment

State of the Art CGE Models - Selected Features

Explicit representation of the financial sector Dixon et al (2015), GEM-E3

Technical change and innovation-induced growth GEM-E3, Christensen et al 2015

Endogenous Supply of human capital LIM et al (2015)

Human capital & ability to absorb/generate knowledge Bretschger et al (2015) Explicit representation of infrastructure Lofrgen (2021) Unemployment, Multiple Households Boeters (2013), Rutherford (2004), GEM-E3

Dec-2021

References

- 1. GEM-E3 model manual available at <u>https://e3modelling.com/modelling-tools/gem-e3/</u>. Capros P, Van Regemorter D, Paroussos L, Karkatsoulis P, Fragkiadakis C, Tsani S, Charalampidis I, Revesz T, "GEM-E3 Model Documentation".
- 2. Dixon, James A. Giesecke, Maureen T. Rimmer (2015), "A financial CGE model of the Australian economy", Centre for International Finance and Regulation https://doi.org/APO-66340
- 3. Christensen M. A CGE model with ICT and RandD-driven endogenous growth: A detailed model description. EUR 27548. Luxembourg (Luxembourg): Publications Office of the European Union; 2015. JRC97908
- 4. Lim, Jaewon & Lee, Changkeun & Kim, Euijune. (2015). Contributions of human capital investment policy to regional economic growth: an interregional CGE model approach. The Annals of Regional Science. 55. 10.1007/s00168-015-0690-0.
- 5. Bretschger, Lucas; Lechthaler, Filippo; Rausch, Sebastian; Zhang, Lin (2015) : Knowledge Diffusion, Endogenous Growth, and the Costs of Global Climate Policy, Economics Working Paper Series, No. 15/226, ETH Zurich, CER-ETH Center of Economic Research, Zurich, <u>http://dx.doi.org/10.3929/ethz-a-010569391</u>
- 6. Lofgren, Hans and Martin Cicowiez, 2021"Infrastructure in CGE models: Alternative formulations, empirical evidence, and a new approach", GTAP
- 7. Boeters S. (2013), "The Labour Market in CGE Models", Handbook of Computable General Equilibrium Modeling" SET, Vols. 1A and 1B
- 8. Thomas Rutherford, David Tarr, (2004), "Poverty Effects of Russia's WTO Accession: modelling "real" households and endogenous productivity effects" The World Bank, available at http://documents.worldbank.org/curated/en/647481468780907855/Poverty-effects-of-Russias-WTO-accession-modeling-real-households-and-endogenous-productivity-effects

Thank You

MORE INFORMATION AT

WWW.E3MODELLING.COM

INFO@E3MODELLING.COM, PAROUSSOS@E3MODELLING.COM

