The Energy Trilemma Index as a tool to support national security of energy system towards climate neutrality

Authors: Karlis Gicevskis, Edgars Groza, Inese Karpovica, Edgars Smiltans

Table of contents

O1 Background

The Energy Trilemma Index as a tool

O2 Aim and methods

A look on how to upgrade the energy sector

O3 Analysis

Statistical records and energy experts

Conclusion

Improvements still are required

Background

<u>"The Energy Security</u> <u>Score</u>		
Country	Score	
1.Canada	77.5	
2.Finland	75.3	
3.Romania	74.1	
4.Latvia	74.9	
5.Sweden	74.5	

"The Energy Equity Score"

Country	Score
1.Qatar	99.9
1.Kuwait	99.8
1.UAE	99.8
2.Oman	96.6
2.Bahrain	99.6
44.Latvia	78.1

"The Environmental Sustainability Score"

Country	Score
1.Switzerland	88.2
2.Sweden	86.3
3.Uruguay	85.4
4.Norway	84.4
5.Panama	83.7
34.Latvia	70.9

The aim and methods

Aim. The aim of this study is to investigate Latvian energy security dimension to assist decision makers describing the key points that can move the energy sector onto safer ground.

Methods. The dimension of energy security considers various sub-indicators that covers the effectiveness of management of domestic and external energy sources, along with the reliability and resilience of energy infrastructure. Up to ten-year period retrospective analysis of statistical records of those indicators as well as Latvian and foreign scientific and professional research studies was revised by authors and discussed with another 12 experts from a programme "The Future Energy Leaders Latvia" organized by the Latvian WEC committee.

Diversity of primary energy supply Final energy consumption by product

Import dependence

Diversity of suppliers

Increasing numbers of electricity and natural gas traders

Diversity of electricity generation

Total installed generation capacity

Energy storage for oil

Energy storage for gas

SAIDI and SAIFI

SAIDI:Average duration of power outages (min) per customer per year

SAIFI: Average number of power outages per customer per year

0.23

1.51

2020

decreasing slowly

Results

Indicators	Ratings in last years	Opportunities and risks for Latvia
Diversity of primary energy supply	not changing	-more solar, wind capacities, new energy carriers (like hydrogen, synthetic fuels, etc.) -greater energy dependence and new high price disruptions
Import dependence	increasing	-stronger focus on energy efficiency, use of biofuels -system would further heavily relay on energy imports
Diversity of suppliers	increasing	-close energy integration with neighboring countries (new markets and platforms) -unsecure and not trustful suppliers who uses dominant state
Diversity of electricity generation	not changing	-access to market for demand response, electricity storage, virtual power plants -not flexible and modern generation underlies weak performance
Energy storage for oil	not changing	-diversity of supply and stocks / storage levels -unsecure and not trustful suppliers may use dominant state
Energy storage for gas	not changing	-infrastructure sharing and integration with neighbours -operational costs may lay mainly to local consumers
System stability as SAIFI (interruptions) and SAIDI (outage duration)	increasing slowly	-digitalisation of infrastructure, new data centres and data policy -not improved ratings, inefficient and costly system operation

Opportunities

- 1. Reinforce auxiliary service provision
- 2. Develop national storage strategy
- 3. Diversify primary energy sources independency
- 4. Develop clear plan for decarbonization of its energy system

Conclusions

Table 3: Top 10 Rank Performersin Energy Security

Improvements are required

New energy security issues

Clear plan for energy system development is needed

New indicators for security index assessment

Thanks

Do you have any questions?

Acknowledgements. The authors would like to express their gratitude to an executive committee of program "Future Energy Leaders in Latvia". This research was also supported by Riga Technical University's Doctoral Grant programme.