

Computable General Equilibrium Model as a Tool to Assess the Impact of Climate Policy in Latvia

Olegs Krasnopjorovs, Daniels Jukna, Konstantins Kovalovs, Rita Freimane 18.03.2022.

Macroeconomic impact of climate policy (literature findings)

GDP and productivity: \checkmark

Employment: \downarrow (skill redistribution: \uparrow high-skilled jobs; \downarrow low-skilled jobs).

Inflation: \uparrow

But:

- Impact of climate policy could be smaller than impact of climate change (global warming, natural disasters, more extreme weather events);
- Double-dividend hypothesis: wise climate policy could increase both:
 - welfare (taxes on pollution \uparrow allow to \downarrow taxes on labour income);
 - well-being (lower pollution => better health, longer life expectancy => ↑ happiness (and ↑ productivity));

=> Design of climate policy is crucial: economic analysis needed => CGE model.

Economic development goes together with the environmental goals

Environmental Kuznets curve

Theoretical model of environmental quality, population health and economic development

Stages of economic development

Large room to \uparrow environmental quality also in Latvia

10 years ago, Riga was the leader of the Baltic capitals in terms of environmental quality. Lack of progress => Riga is currently lagging behind

Source: author's calculations based on European Commission survey on the Quality of life in European cities. Balance of replies was recalculated to 0-100 scale, 0 – not at all satisfied, 100 – very satisfied.

Why to use CGE (and not econometric) model?

- Diffenbaugh, Burke (2019) «Global warming has increased global economic inequality». Proceedings of the National Academy of Sciences of the United States of America.
- Finding: global warming is responsible for 25% increase of the income inequality between countries over the past half century.

 $\Delta \log(Y_{it}) = \beta_1 T_{it} + \beta_2 T_{it}^2 + \lambda_1 P_{it} + \lambda_2 P_{it}^2 + \mu_i + v_t + \theta_{1i} t + \theta_{2i} t^2 + \varepsilon_{it},$

where Y_{it} is per capita GDP in country *i* in year *t*, *T* is the average temperature in year *t*, *P* is the average precipitation in year *t*, μ_i are country-fixed effects, v_t are year-fixed effects, and $\theta_{1i}t + \theta_{2i}t^2$ are country-specific linear and quadratic time trends.

Or: GDP growth = f (Temperature, Rainfall)

 A critique by Rosen (2019) «Temperature impact on GDP growth is overestimated»:
 «I believe that all of the numerical results cited in this article are wrong, because the methodology is not valid»

Excludes the main factors of economic growth: physical capital, population growth, technical progress, education, employment rate changes etc.

 \Rightarrow Results based on one equation may be misleading.

It is not possible to describe all economic interactions in one equation.

CGE model is a computer simulation that uses a system of equations that characterises the interaction of all sectors of the economy. All these interactions should be considered to get reliable results.

CGE model consists of the 2 main parts:

- (1) Model structure
- (2) Database

CGE model structure:

CGE model database:

(1) income and expenditure flows in the economy (input-output tables, supply-use tables u.c.);

(2) parameter values.

Source: Babatunde, Begum, Said (2017). «Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review». *Renewable and Sustainable Energy Reviews*, Volume 78, 2017, Pages 61-71, <u>https://doi.org/10.1016/j.rser.2017.04.064</u>.

Why one CGE model is not enough?

«**Two-way soft-linking**»: each model works independently from each other (e.g., 1st model results are exogenous variables for the 2nd model). Two models are linked manually: information flows are controlled by researchers, in a form of multiple iterations.

How to link CGE with a Times/Markal model (how will the models exchange information with each other)?

Soft-linking

- Models work independently;
- Information flows are controlled by researchers, in a form of multiple iterations;
- Transparency, researchers' learning-by-doing;
- Researcher decides how to change inputs/assumptions to get consistent results;
- Easier to develop, may be harder to use.

Hard-linking

- Models work independently
- information is exchanged automatically, using computer programs;
- Efficiency / productivity;
- Model 1 is given control over specific results; Model 2 may reproduce these results with a different aggregation level;
- Harder to develop, may be easier to use.

Hybrid model / model integration

- Models depend on each other
- Model integration may need to simplify one or both models significantly;
- OK for looking at a global picture, but with less sectoral or technological details, it is less useful for public policy considerations.

=> What this project will do: soft-link first, then think about hard-link.

Some of the best practice examples

	i 5		1
Article	Data sent from CGE to TIMES	Data sent from TIMES to CGE	Linking
Böhringer & Rutherford, 2009	• Energy demand	 Net energy output Inputs of non-energy goods to the energy system 	Hard-linking
Fortes, et al., 2014	• Energy demand	 Energy prices Energy consumption Policy monetary values 	Integration
Dai, et al., 2016	• Energy demand	 Energy consumption 	Soft-linking
Holz, et al., 2016	 Energy demand 	• Energy mix	Soft-linking
Abrell & Rausch, 2016	 Electricity demand and price Input prices for fuel, capital, labour, goods and services 	 Electricity dispatch Input demand for fuel, capital, labour, goods and services 	Hard-linking
Krook-Riekkola, et al., 2017	• Energy demand	 Energy intensity parameter Energy mix Energy prices 	Soft-linking
Wiebe, et al., 2017	 Energy demand 	• Energy mix	Hybrid- linking
Andersen, et al., 2019	 Energy demand Fuel prices 	Energy pricesEnergy mix	Soft-linking

Examples of linking the CGE and TIMES models

Source: authors' elaboration based on academic literature.

A way forward

- Project began in September 2021;
- In cooperation with E3 Modelling, Ministry of Economics, Institute of Physical Energetics, Riga Technical University etc.;
- Aim is to develop a full-fledged dynamic CGE model with energy/environment sector, i.e. CGE model should be able to assess the impact of both carbon and non-carbon shocks; and soft-link it with Times/Markal model (which describes details of the energy sector);
- Analysis of how to achieve the maximum benefits of the climate policy, with the minimum costs;
- Take into account both economic and social impacts (e.g., income inequality).

Please address any comments and questions to:

<u>Olegs.Krasnopjorovs@lu.lv</u>